9 research outputs found

    Genetic determinants of rates of cognitive decline in preclinical Alzheimer’s Disease

    Get PDF
    In 2015 the number of people worldwide living with Dementia was 46.8 million, with approximately 50-75% of these cases being clinically defined as Alzheimer’s disease (AD). Despite extensive efforts, clinical trials have so far failed to yield a treatment that successfully addresses the underlying cause of AD. This lack of treatment has been suggested, in part, to be a result of late stage of intervention in current clinical trial design. For this reason, greater focus has been placed on preclinical trials and in turn both the identification of individuals at-risk for AD and, amongst these, those that are expected to decline over the course of a trial. While brain imaging to determine Aβ- amyloid burden has utility in identifying individuals with preclinical AD, further work needs to be conducted to determine what influences rates of change during these early disease stages. Of particular focus is the rate of decline in cognitive performance, as it is the primary outcome measure of efficacy in clinical trials. A number of genetic variants have been associated with cognitive performance, however additional research needs to be conducted to accurately understand the influence that genetic variation has on cognition in preclinical AD. Aims Initially the aim of this thesis was to assess the combined genetic influence of established AD risk genetic variants on preclinical cognitive performance, specifically using AD-risk effect-size weighted polygenic risk scores (PRSs) (Chapter 2). It was then aimed to evaluate the effects on cognitive rates of change in preclinical AD of genes with a priori evidence for association with cognition, both individually (Chapter 3) and then when combined (Chapter 4). The results of the preceding chapters informed the final aim which was to determine a novel method of weighting individual variants in genes associated with AD-risk and/or cognition, for use in a genetic risk score that would improve the prediction of preclinical cognitive rates of change (Chapter 5). Methods All studies presented in this thesis utilised data from the highly characterised Australian Imaging, Biomarkers and Lifestyle Study of Aging (AIBL). The AIBL study is a longitudinal cohort study collecting data at 18-monthly intervals, currently consisting of 7.5 years of follow up. Individuals investigated in this thesis had been Positron Emission Tomography (PET) imaged to determine neocortical amyloid burden. Further, all individuals were classified as Αβhigh or Αβlow based on tracer specific cut offs. In addition, a subset of these samples underwent lumbar puncture for CSF collection at the study baseline, and Aβ42, total-tau and phospho-tau were quantified. Finally, based on the AIBL neuropsychological test battery, three cognitive composites previously developed were calculated for all participants. The cognitive composites investigated were; verbal episodic memory, a statistically driven global cognition composite, and the Pre-Alzheimer’s Cognitive Composite. The AD-risk weighted PRS (Chapter 2) consisted of 22 genetic variants associated with AD classification, and was calculated by weighting individual variants based on their previously published associations with risk for AD. A statistically derived Cognitive Genetic Risk Profile (Cog-GRP), specifically driven by verbal episodic memory, was developed using a decision tree analysis (Chapter 4). Finally, a 27 genetic variant cognition weighted PRS (cwPRS), was developed and tested in a preclinical AD sample (Chapter 5). For the cwPRS, effect sizes for decline in a verbal episodic memory were determined individually for all variants in a reference sample. The resulting effect sizes were then used to calculate the cwPRS for each participant in a test sample (Chapter 5). For both the AD-risk weighted PRS (Chapter 2) and the cwPRS (Chapter 5), PRS calculations were conducted with both the inclusion and exclusion of the major genetic risk factor for, Apolipoprotein E (APOE). In all studies, linear mixed models were used to investigate associations between genetic factors, independent or in combination, and longitudinal rates of cognitive performance. Results In CN older adults the AD-risk weighted PRS, both including and excluding APOE, was positively correlated with brain and blood biomarkers, specifically; brain Aβ burden, CSF total-tau and phospho-tau (Chapter 2). When investigating cognitive performance, specifically in CN Αβhigh participants, significant associations with baseline and longitudinal cognition were only observed in the AD-risk weighted PRS with APOE (Chapter 2). When investigating gene variants previously reported to influence cognition, in CN Αβhigh participants, no independent associations were observed for any variant (Chapter 3). However, in the same sample, after interaction with APOE e4, significant associations were observed for variants in the Kidney Brain Expressed Protein (KIBRA) and Spondin-1 (SPON1) genes (Chapter 3). The combination of variants investigated in Chapter 3, with additional variants, resulted in the development of the Cog-GRP (Chapter 4). The Cog-GRP was able to delineate four groups: APOE ε4+ Risk, APOE ε4+ Resilient, APOE ε4- Risk, APOE ε4- Resilient, with the ε4+ Risk group reporting significantly faster decline in cognition than all other groups (Chapter 4). Finally, a PRS encompassing a combination of AD-risk genes (Chapter 2) and cognitive-risk genes (Chapters 3 and 4), weighted by episodic memory (cwPRS), was reported to be associated with preclinical longitudinal cognitive performance (Chapter 5). Further, these associations were observed irrespective of the presence or absence of APOE in the calculation of the cwPRS (Chapter 5). Conclusions The work presented in this thesis provides an in depth investigation of genetic influences in preclinical AD, particularly on cognitive performance. Importantly, it supports the hypothesis that there is are differences between the genetic architectures of AD-risk and AD progression. The results presented here support the use of combinatory approaches when investigating genetic influence. Finally, reported here is a novel method for PRS weighting, with the ability to predict preclinical cognitive performance in the presence and absence of APOE. Further investigation is required in cohorts with comparable data to the AIBL study, to validate the methods explored in this thesis, allowing for their eventual use in a clinical setting

    Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease

    Get PDF
    We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼ 456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P \u3c 1 × 10−3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases

    Fifteen years of the Australian imaging, biomarkers and lifestyle (AIBL) study: Progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer\u27s disease

    Get PDF
    Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer\u27s disease dementia (AD)) as an \u27Inception cohort\u27 who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an \u27Enrichment cohort\u27 (as of 10 April 2019). Objective: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. Methods: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. Results: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. Conclusion: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims

    Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden

    Get PDF
    The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4 plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4 genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776, was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148, rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should be considered when interpreting sleep-Aβ relationships

    Androgen receptor CAG repeat length as a moderator of the relationship between free testosterone levels and cognition

    No full text
    Age-related decrease in testosterone levels is a potential risk factor for cognitive decline in older men. However, observational studies and clinical trials have reported inconsistent results on the effects of testosterone on individual cognitive domains. Null findings may be attributed to factors that studies have yet to consider. In particular, individual variations in polyglutamine (CAG) length in the androgen receptor (AR) gene could alter androgenic activity in brain regions associated with cognitive processes including memory and executive functions. However, the role of AR CAG repeat length as a moderator of the relationship between testosterone levels and cognition has not been investigated. Therefore, we aimed to examine the relationship between baseline calculated free testosterone (cFT) levels, change in cFT levels over 18 months and CAG repeat length on cognitive performance in memory, executive function, language, attention and processing speed domains. These relationships were examined in 304 cognitively normal older male participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Ageing. In the attention and processing speed domain, a short CAG repeat length appears to exacerbate the effects of low baseline cFT levels that are also lower than expected at follow-up. These results highlight that individual variations in AR CAG repeat length should be considered in future studies and clinical trials that examine the complex relationship between testosterone and cognition

    Rates of diagnostic transition and cognitive change at 18-month follow-up among 1,112 participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL)

    No full text
    Background: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing is a prospective study of 1,112 individuals (211 with Alzheimer's disease (AD), 133 with mild cognitive impairment (MCI), and 768 healthy controls (HCs)). Here we report diagnostic and cognitive findings at the first (18-month) follow-up of the cohort. The first aim was to compute rates of transition from HC to MCI, and MCI to AD. The second aim was to characterize the cognitive profiles of individuals who transitioned to a more severe disease stage compared with those who did not. Methods: Eighteen months after baseline, participants underwent comprehensive cognitive testing and diagnostic review, provided an 80 ml blood sample, and completed health and lifestyle questionnaires. A subgroup also underwent amyloid PET and MRI neuroimaging. Results: The diagnostic status of 89.9% of the cohorts was determined (972 were reassessed, 28 had died, and 112 did not return for reassessment). The 18-month cohort comprised 692 HCs, 82 MCI cases, 197 AD patients, and one Parkinson's disease dementia case. The transition rate from HC to MCI was 2.5%, and cognitive decline in HCs who transitioned to MCI was greatest in memory and naming domains compared to HCs who remained stable. The transition rate from MCI to AD was 30.5%. Conclusion: There was a high retention rate after 18 months. Rates of transition from healthy aging to MCI, and MCI to AD, were consistent with established estimates. Follow-up of this cohort over longer periods will elucidate robust predictors of future cognitive decline.12 page(s
    corecore